Active manifold learning via a unified framework for manifold landmarking

نویسندگان

  • Hongteng Xu
  • Licheng Yu
  • Mark A. Davenport
  • Hongyuan Zha
چکیده

The success of semi-supervised manifold learning is highly dependent on the quality of the labeled samples. Active manifold learning aims to select and label representative landmarks on a manifold from a given set of samples to improve semi-supervised manifold learning. In this paper, we propose a novel active manifold learning method based on a unified framework of manifold landmarking. In particular, our method combines geometric manifold landmarking methods with algebraic ones. We achieve this by using the Gershgorin circle theorem to construct an upper bound on the learning error that depends on the landmarks and the manifold’s alignment matrix in a way that captures both the geometric and algebraic criteria. We then attempt to select landmarks so as to minimize this bound by iteratively deleting the Gershgorin circles corresponding to the selected landmarks. We also analyze the complexity, scalability, and robustness of our method through simulations, and demonstrate its superiority compared to existing methods. Experiments in regression and classification further verify that our method performs better than its competitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Video Subject Inpainting: A Posture-Based Method

Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...

متن کامل

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

Landmarking Manifolds with Gaussian Processes

We present an algorithm for finding landmarks along a manifold. These landmarks provide a small set of locations spaced out along the manifold such that they capture the low-dimensional nonlinear structure of the data embedded in the high-dimensional space. The approach does not select points directly from the dataset, but instead we optimize each landmark by moving along the continuous manifol...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.09334  شماره 

صفحات  -

تاریخ انتشار 2017